Constraining neutron capture rates on radionuclides: the DICER instrument at LANSCE

A. Stamatopoulos¹, P. Koehler¹, E. Bond², S. Chasapoglou¹, A. Couture¹, B. DiGiovine², S. Essenmacher¹, A. Marenco³, V. Mocko⁴, G. Rusev², J. Ullmann¹, C. Vermeulen²

¹Physics Division, Los Alamos National Laboratory, 87545, NM, USA ²Weapon Stockpile Modernization Division, Los Alamos National Laboratory, 87545, NM, USA ³Actinide Material Processing & Power Division, Los Alamos National Laboratory, 87545, NM, USA

⁴Chemistry Division, Los Alamos National Laboratory, 87545, NM, USA

Corresponding Author Email: thanos@lanl.gov

Neutron capture data essential for applications such as astrophysics, criticality safety and defense applications, however, challenging to acquire for short-lived radionuclides. A technique has been recently developed at the Los Alamos Neutron Science CEnter (LANSCE), that can provide accurate data on a plethora of radionuclides relevant to these applications, by performing neutron transmission measurements. The Device for Indirect Neutron Capture Experiments on Radionuclides (DICER) is a capability that was developed to address the aforementioned challenge. DICER performed its first measurement on a radioactive sample recently, by irradiating liquid ⁸⁸Zr samples that were produced in collaboration with the Isotope Production Facility (IPF) at LANSCE. This measurement resulted in the discovery of a nuclear level near the neutron separation energy. Other recent efforts include the measurements of ²³⁹Pu and ⁸⁸Y. A description of the new apparatus as well as preliminary data on a few stable and radio-isotopes will be presented.